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ABSTRACT 

An appropriate therapeutic strategy against 

systemic infections associated with chronic 

immunodeficiency disease possesses a great 

challenge for medical professionals. Long 

circulatory carrier systems offer a viable alternative 

to address the challenges related to systemic 

infections. However, the clinical success of 

aforesaid strategy depends on how efficiently the 

carrier system disguised the opsonisation process. 

There are several variables such as molecular 

weight, lipophilicity, antigenicity, size, shape, bio-

chemical nature, etc. reported to be play an 

important role in the opsonisation process. Taking 

above factors into consideration lot of efforts have 

been made by the formulation scientist to design a 

suitable carrier system to achieve the desired 

therapeutic goal. This review provides an interface 

of the opsonisation process and the formulation 

strategy for making a suitable carrier system 

against systemic infections. 

 

I. INTRODUCTION 
Over the past few decades, we have 

observed a surge in development of long 

circulating vehicles within the nanoscale size 

range. By keeping the carrier system in the blood 

stream for long enough improves the therapeutic 

outcomes and decrease the unwanted side effects of 

drugs, particularly useful in delivery of potent and 

anticancer drugs. However, opsonization, a body‘s 

natural defence mechanism against invader 

mediated through RES (reticulo-endothelial cells) 

is a major obstacle for making the carrier system 

long circulatory.The immune reaction cascade is 

initiated with the adsorption of opsonin‘s to the 

surface of nanoparticles and in doing so, aid their 

clearance via phagocytosis. Opsonin‘s are specific 

proteins related to immune system such as 

immunoglobulin‘s or complement proteins. 

Without the presence of adsorbed opsonin proteins, 

the phagocytes naturally will not be able to bind or 

identify the foreign particles(Owens III and Peppas, 

2006). As per general rule, the opsonin proteins can 

recognise hydrophobic particles more rapidly as 

compared to hydrophilic particles due to enhanced 

absorbability of blood serum proteins on 

hydrophobic surfaces (Carrstensen et al., 1992, 

Norman et al., 1992). Other than opsonisation the 

intravenously administered nanoparticles can be 

eliminated from the systemic circulation via 

adsorption mediated endocytosis. Adsorption 

mediated endocytosis triggered by interaction 

between the positively charged nanocarrier and the 

negatively charged cell membrane (Sahay et al., 

2010). 

The approaches utilized for making long 

circulatory nanoparticles involve the coating of 

PEG (poly ethylene glycol) (Yadav et al., 2011), 

dextran sulphate (Kotagiri et al., 2013), combined 

coating of PEG and water-soluble chitosan (Sheng 

et al., 2009), coating of biomimetic entities i.e. 

body‘s own long circulating entities such as RBC 

membrane coated nanoparticles (Fang et al., 2012), 

heparin or dextran surface bearing poly(methyl 

methacrylate)nanoparticles (Passirani et al., 1998), 

biomimetic mucin modified PLGA nanoparticles 

(Thasneem et al., 2013). The current gold standard 

for imparting long-circulating features involves the 

use of PEG, which surrounds the particles with a 

hydrophilic layer and thus prevents recognition by 

the mononuclear phagocyte system. Recently, a 

new strategy for synthesizing biomimetic 

nanoparticles has been inspired by the body's own 

long-circulating entities, red blood cells (RBCs) 

(Fang et al., 2012). Many of thesesystems utilises 

surface modification with biomolecules or 

hydrophilic polymers to escape from 

opsonisation.However, product stability, scale-up 

and feasibility of applications are the major 
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concern to make these strategies realistic and 

applicable. 

To obtain successful long circulatory 

nanoparticles, most importantly we need to 

understand the factors that influence blood 

circulation time and biodistribution of 

nanoparticles. Herein particle size, shape, surface 

charge, hydrophilicity and surface modification of 

nanoparticles have been considered as key factors 

affecting the retention time in blood circulation and 

organ distribution of nanoparticles. These factors if 

maintained up to an optimized level can contribute 

to make the nanoparticles long circulatory by 

delaying opsonization thus escaping from 

reticuloendothelial system. 

 

II. OPSONIZATION PROCESS 
The process of opsonization is one of the 

major obstacles for intravenously administered 

polymeric nanoparticles. The opsonisation process 

begins when nanoparticles are administered via 

intravenous injection (I.V.), with the adsorption of 

opsonin proteins present in the blood serum to the 

surface of nanoparticles and by doing so, allowing 

macrophages of the mononuclear phagocytic 

system (MPS) to easily recognize and remove these 

polymeric nanoparticles before they can perform 

their designed therapeutic function. Together these 

two processes form the main clearance mechanism 

for the elimination of undesirable components 

larger than the renal threshold limit from the blood. 

If the polymeric nanoparticles are non-

biodegradable, that cannot be destroyed by the 

process phagocytosis then sequestration of MPS 

organs typically occurs which leads to the toxicity 

and other negative side effects(Ilium et al., 1986, 

Peracchia et al., 1999, Plard and Bazile, 1999). 

 

 
Figure-1 Process of opsonisation and phagocytosis. 

 

The longevity in the circulation of 

polymeric nano-carriers is strongly affected by 

physical interactions with specific components 

present in blood circulation that are opsonins. 

These components include complement proteins 

such as C3, C4, and C5 are known to be common 

opsonins along with other blood serum proteins 

such as laminin, fibronectin, C-reactive protein, 

type I collagen, and immunoglobulin(Frank and 

Fries, 1991, Johnson, 2004, Ratner et al., 2004). 

The opsonin‘s play a major role in the clearance of 

foreign particles as indirectly confirmed in many 

in-vivo animal studies of inherited and induced C3 

deficient animal models. For example, research has 

revealed that these animal models are often times 

more susceptible to certain diseases which are 

easily controlled by phagocytosis in non-C3 

deficient animal models (Singer et al., 1994). 

The mechanism of binding of opsonins on 

the surface of polymeric nanoparticles or Nano 

vehicles include any of several attractive forces 

such as van der wall, electrostatic, ionic, 

hydrophobic/hydrophilic and other forces. After 

binding of opsonins the next step is the attachment 

of opsonized particles to the macrophage via 

surface bound opsonins. Without surface bound 

opsonin proteins the macrophages will typically not 

be able to recognize the foreign particles. The 

method of macrophage attachment may be specific, 

non-specific or complement activation. Phagocytic 

cells contain specialized receptors that can interact 

with specific opsonin proteins. The second method 

of attachment involves the non-specific binding of 

phagocytes to surface adsorbed blood serum 

proteins which can result in the stimulation of 

phagocytosis as well(Frank and Fries, 1991) The 

third significant method of phagocytic attachment 
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is complement activation. The complement system 

can be activated by one of several mechanism 

including the classical, alternative and lectin 

pathway.  

The classical complement pathway 

requires the presence of antibodies, either as 

immunoglobulin (IgG or IgM) bound to cell 

surface antigen (Ag) or as an Ag-Ab immune 

complex. The serum protein C1 binds to the 

antibody, which in turn results in activation of C4, 

C2, and C3, and leads to the formation of C5, C6, 

C7, C8 and C9. This eventually leads to the 

formation of the C5-C9 membrane attack complex 

(MAC), which lyses and destroys the cell. The 

alternative pathway can be initiated with the 

complete absence of antibodies and is naturally 

activated by the binding of C3 fragments to the 

surface of the pathogen. The lectin pathway is 

activated by the binding of mannose-binding lectin 

on mannose contained on the surface corona of 

bacteria and viruses. Although a few hypotheses 

have been proposed to elucidate the presence of 

supplementary activation pathways, they have not 

been fully explained. 

Regardless of the activation pathway, the 

enzymatic cascade of the complement activation 

leads to the formation of a common enzyme, C3 

convertase, which cleaves the central protein of the 

complement system, the third component C3(Sahu 

and Lambris, 2001). The fragment C3b of C3 is the 

crucial active component that triggers the cleavage 

of a variety of complement proteins (C5–C9). The 

assembly of these proteins contributes to the 

formation of the membrane attack complex (MAC) 

that is able to destabilize bacteria, viruses, and 

nanocarriers for drug delivery. 

The third and final step in the clearance 

process is the ingestion of foreign materials by 

phagocytes. This step in the process typically 

involves the endocytosis of the particle or foreign 

material by a phagocyte. Following endocytosis of 

the particle, the phagocytes will begin to secret 

enzymes and other oxidative-reactive chemical 

factors, such as superoxides, oxyhalide molecules, 

nitric oxide, and hydrogen peroxide, to break down 

the phagocytosed material (Mitchell, 2004). 

Although, the process of opsonisation is 

directed to the natural body protection from the 

unwanted foreign particles that includes virus, 

bacteria and other disease causing microorganisms 

or particulates but in addition this process promotes 

the removal of circulating drug carriers as well that 

remains a major obstacle to achieve appropriate 

systemic therapeutic drug concentration. 

III. PHYSICOCHEMICAL 

PROPERTIES AFFECTING 

OPSONISATION PROCESS 
3.1 Size 

The in vivo fate of nanoparticles depends 

on their size. Particle size is known to be inherently 

related to the rate of clearance from the blood 

circulation as smaller particles ranging 70-200 nm 

(Stolnik et al., 1995, Alexis et al., 2008) shows 

higher retention in blood stream. Nanoparticles 

ranging less than 5 nm in diameter are typically 

eliminated from the blood circulation by renal 

clearance (Vinogradov et al., 2002, Choi et al., 

2007) which leads to short blood half-lives. Mostly 

the optimized size of nanocarriers used in 

nanomedicine normally ranges from 20 to 200 nm, 

as NCs greater than 200 nm would be more 

efficiently captured by the RES and may cause 

embolization in the liver and lung while those 

lesser than 100 nm would escape from the blood 

vessels through fenestrations in the endothelial 

lining (Stolnik et al., 1995). As the matter of fact, 

due to the heterogeneity in size it is hard to identify 

a specific threshold for NCs to adapt the long 

circulatory effect.Another conceivable explanation 

is that size reliant on biodistribution might have 

more to do with a simple filtering effect, whereby 

larger particles are eliminated by the spleen and 

liver more quickly while smaller particles are 

concentrated to the bone marrow (Moghimi et al., 

1993a). 

 

3.2 Shape 

The shape intravenously administered 

nanocarriers remains mostly ignored characteristic 

that is also taken to be an important factor affecting 

blood circulation time(Fox et al., 2009, Sharma et 

al., 2010, Merkel et al., 2011). Disk like, 

cylindrical, and biconcave particles might be more 

effectual than spherical ones at minimizing cellular 

as well as phagocytic uptake. Research revealed 

that the initiation of macrophage internalization is 

depend on the local shape of the particle at the 

position of attachment rather than the overall shape 

(Champion and Mitragotri, 2006).For example, an 

elliptical particle internalized within few minutes if 

the attachment to macrophage at the pointed end 

while flat region attached particles remain intact for 

longer period of time. Shape, contact area, volume, 

local curvature of the particle at the contact point 

and the orientation of the particle are critical to the 

nature of interaction with blood components as 

well as blood vessel wall. 
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In recent study pegylated gold 

nanoparticles (spherical shaped) and rod shaped 

particles were compared and it was found that the 

gold nanorods have minimum uptake by liver and 

had longer circulation time than gold nanoparticles 

in blood stream(Janát-Amsbury et al., 2011, Merkel 

et al., 2011). Doshi et a in 2009 prepared biconcave 

shaped microparticles, and postulated that the 

mechanobiological mimicry of RBCs can increase 

the elasticity and blood circulation time of 

intravenously administered nanocarriers(Doshi et 

al., 2009). Recently, the tumor distribution kinetics 

of nanorods with a sizeof 44nm were compared to 

those of 35nm nanospheres showing the similar 

hydrodynamic radius (Chauhan et al., 2011). In 

spite of similar blood circulation profiles, the 

nanorods were shown to extravasate to the 

interstitium 4 times faster and to diffuse deeper in 

the tumor as compared to nanospheres. 

 

3.3 Surface charge 

Surface charge is one of the surface 

characteristic that can affect the in-vivo fate of 

nanocarriers after intravenous administration. The 

overall plasma circulation profile along with 

opsonisation profile and recognition of the 

intravenously administered particles by organs of 

the MPS can be altered by the existence of charge 

present on the surface of particles (Alexis et al., 

2008, Salvador-Morales et al., 2009, Bertrand and 

Leroux, 2012) The nanocarriers surface may be of 

anionic, cationic or of neutral charge that is depend 

upon polymer used for the fabrication of 

nanocarriers. Roser et al in 1998 demonstrated in 

his research that the charged particles are easily 

recognized by opsonin proteins and subsequently 

phagocytized by mononuclear phagocytic system 

(MPS) then neutrally charged particles (Roser et 

al., 1998). The clearance of nanocarriers by MPS 

bearing negative surface charge canincreased, 

decreased or have no influence (Yamamoto et al., 

2001, Levchenko et al., 2002, Arvizo et al., 2011), 

but particles with positive charges are mostly 

recognized by plasma proteins and rapidly cleared 

off from the systemic circulation (Campbell et al., 

2002, He et al., 2010, Xiao et al., 2011). Moreover 

positive charged particles interact with negatively 

charged luminal surface of blood vessel wall that 

results in rapid clearance from the blood circulation 

(Maeda, 1994, He et al., 2010).Furthermore 

cationic nanocarriers are more likely to produce 

toxic effects than anionic nanocarriers (Wei et al., 

2012). For example, in the presence of definite 

concentrations of unshielded primary amines 

(positive charge), haemolysis was observed on the 

surface of carbosilane, poly-amidoamine, poly-

lysine and polypropylene imine (Malik et al., 2000, 

Shah et al., 2000, Domański et al., 2004, Agashe et 

al., 2006, Bermejo et al., 2007, Dutta et al., 2007). 

 

 
Figure-2 Fate of charged nanoparticle in systemic circulation. 
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IV. PREREQUISITE FEATURES FOR 

LONG CIRCULATORY CARRIER 

SYSTEM 
It is well known that the biocompatibility 

of intravenously administered particles depends on 

the physical and chemical properties i.e. size, shape 

and surface chemistry as well as the physiological 

environment it came into contact(Dobrovolskaia 

and McNeil, 2007, Dobrovolskaia et al., 2008, 

Aggarwal et al., 2009).Kohane and Langer in 2010 

defines biocompatibility of any material as ―an 

expression of the benignity of the relation between 

a material and its biological environment‖ (Kohane 

and Langer, 2010).However some researchers 

modify this definition in context of delivery system 

as the acceptable functionality of biomaterial in a 

physiological environment is important. In short 

high degree of biocompatibility is attained when a 

material interact with body without inducing any 

adverse effect i.e. toxic immunogenic, carcinogenic 

and thrombogenic. Thus during the initial 

characterization of the intravenously administered 

particles it is most important to evaluate the 

nanoparticles hematocompatibility. ISO-10993 

internationally recognized standard indorses using 

the following in-vitro tests to observe 

hematocompatibility of intravenously administered 

nanomedicines: tests for hemolysis, 

thrombogenicity (this includes effects on platelets) 

and complement activation. 

 

4.1 Hemolysis 

The mechanisms for drug mediated 

haemolysis include nonimmunogenic (e.g., via 

direct drug–erythrocyte membrane interactions) 

and immune mediated (e.g., by a drug-specific 

antibody) hemolysis. Red blood cells (erythrocytes) 

occupied in a larger volume fraction in blood 

stream than other blood components so the 

probability of interaction with intravenously 

administered particle is higher. Such interaction 

ultimately leads to adverse physiological outcome 

(severe hemolysis may cause life threatening 

conditions such as anemia), require the need for the 

examination of haemolytic activity that remains an 

imperative aspect of preclinical characterization of 

nanoparticles. Many authors stated hemolytic 

effects of different nanoparticles in the literature, as 

many of the studies have been conducted with 

blood to see the early toxic effects of nanoparticles 

especially cationic charged particles(Malik et al., 

2000, Shah et al., 2000, Domański et al., 2004, 

Agashe et al., 2006, Bermejo et al., 2007, Dutta et 

al., 2007).For example, among a set of similar-

sized fullerenes (C60- derivatives) bearing different 

numbers of anionic and cationic surface moieties, it 

was found that the haemolytic tendency 

proportionally increasing with increasing the 

cationic surface groups (positive surface charge) 

and the anionic charged groups were found 

safe(Agashe et al., 2006). 

 

4.2 Thombogenicity 

Certain intravenously administered 

nanocarriers often require surface engineering to 

extend the systemic circulation time in order to 

achieve the desired therapeutic outcome. Longer 

the circulation time longer will be the contact with 

components of the coagulation system (i.e.mixture 

of red blood cells, aggregated platelets, fibrin and 

other cellular elements). The interaction between 

the administered nanocarriers with these 

components results in activation of coagulation 

cascade which ultimately leads to partial or 

complete blocking of a blood vessel by 

thrombus(Movat et al., 1965).In-vitro analyses of 

platelet aggregation and plasma coagulation time 

include the incubation of nanoparticles with 

platelet-rich plasma which is obtained from freshly 

derived human whole blood. Then the plasma is 

inspected using a particle count and size analyser to 

define the number of active platelets. Finally the 

percent aggregation of platelet will be calculated by 

comparing the active platelats associated with the 

nanoparticles sample to control plasma (Neun and 

Dobrovolskaia, 2011).The effect of nanocarriers 

surface characteristics on thrombogenic property is 

not currently available comprehensively; however 

thrombogenicity shows charge dependence as 

described above for haemolysis. Specifically 

Koziara et al. have shown that the platelet 

aggregation and activation increases with 

increasing the particles surface charge and 

decreases with PEG coating(Koziara et al., 2005). 

 

4.3 Complement activation 

The biodistribution of intravenously 

administered nanocarriers can be affected by 

nanocarrier-induced complement activation in the 

form of rapid clearance from the systemic 

circulation via complement receptor-mediated 

phagocytosis by reticuloendothelial cells. In 

addition to its key role in nonspecific pathogen 

clearance, complement activation was confirmed to 

be essential in assisting cell-mediated immunity 

through improvement of B-cell responses to an 

antigen and elevation of the stimulation of dendritic 

cells (DC) and T-cells (Knopf et al., 2008). The 
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Complement activation in response to systemically 

administered drugs is answerable for 

hypersensitivity (allergic) reactions and 

anaphylaxis, a life-threatening condition. For itself, 

nano particulate carriers which are intended for 

systemic administration should be tested for the 

tendency to activate the complement system. If the 

nanocarrier does cause noteworthy complement 

activation, its surface characteristics must be 

modified to minimize these interactions to a 

tolerable level. 

 

V. LONG CIRCULATING 

NANOCARRIERS 
5.1 Pegylation 

Prolongation of systemic circulation time 

is a common strategy to increase the retention time 

of the nanoparticles (NPs). Surface modification 

with coating of Polyethylene glycol (PEG) imparts 

stealthy characteristic to NPs, which prevent the 

binding of opsonins and avoid uptake by the 

reticulo-endothelial cells. Protein resistant surface 

of NCs characteristically presents the following 

molecular uniqueness: (i) They are hydrophilic. (ii) 

Theyinclude hydrogen-bond acceptors. (iii) They 

do not include hydrogen-bond donors. (iv) Their 

overall electrical charge is neutral (Holmlin et al., 

2001). 

 

 

 

5.1.1 Mechanism of action of the PEG coating 

The hydrophilic PEG-based coatings 

significantly increase the blood circulation time of 

the nanocarriers. PEG considered as non-toxic and 

was approved by the Food and Drug 

Administration (FDA) for internal use in humans 

(Harris, 1985).The mechanism behind the 

extension of blood half-life of PEG coating is its 

hydrophilicity which is based upon the formation 

of sterically hindered, hydrophilic coating which 

repels the proteins or opsonins to bind on the 

surface of nanocarriers and subsequently avoid 

uptake by phagocytic cells (Blume and Cevc, 1993, 

Tan et al., 1993, Torchilinl and Papisov, 

1994).Although, hydrophilicity was considered a 

paramount requirement, but hydrophilicity is not 

only sufficient to fulfil the surface requirement to 

set up long circulating nanocarriers. To be sure the 

dextran coated liposomes have shorter circulation 

time than PEG-coated ones (Pain et al., 1984), 

regardless of the more hydrophilic nature of 

dextran compared to PEG.Besides hydrophilicity 

the other factors that play a major role in 

opsonisation process is chain flexibility (Blume and 

Cevc, 1993, Torchilinl and Papisov, 1994), 

polymer corona thickness (Moghimi et al., 1993a, 

Stolnik et al., 1995),molecular weight of PEG 

derivatives (Leroux et al., 1995, Peracchia et al., 

1999),density on the carrier surface and 

configuration (Jeon and Andrade, 1991, Tirosh et 

al., 1998, Du et al., 2001). 

 

 
Fig. 3 Mechanism of interaction between opsonins and pegylated hydrophobic surface nanocarrier, in both 

brush and mushroom configuration of PEG chains 1: hydrophobic attraction force between the opsonin and 

hydrophobic surface nanocarrier, 2: Vander-waals attraction between the opsonin and hydrophobic surface 

nanocarrier, 3: Vander-waals attraction between the opsonin and PEG chains, 4: steric repulsion resulting from 

PEG chains, 5: minimum density of PEG chains results in opsonin adsorption on the hydrophobic surfaced 

nanocarrier. 
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5.1.2 Chain Flexibility 

Chain flexibility is another feature of PEG 

coated layer which play an important role in 

imparting stealth character to the intravenously 

administered particles other than hydrophilicity 

(Blume and Cevc, 1993, Torchilinl and Papisov, 

1994).Due to the transient, flexible and rapidly 

changing structure of PEG chains the opsonin 

found difficulty in recognizing the surface for 

adsorption (Woodle and Lasic, 1992).The 

hydrophilicity and chain flexibility both serves as 

an effective coating protector for intravenously 

administered particles against opsonisation 

(Torchilinl and Papisov, 1994), hydrophilicity 

provides a sterically hindered hydrodynamic 

surface and flexibility is required for repelling 

proteins from polymer chains on particle surface 

yielding stealth nanocarrier (Shalaby, 

1984).Accordingly, the lower complement 

activation of PEG as compared to dextran (Pain et 

al., 1984)may be due to the flexible nature of PEG 

molecules. 

 

5.1.3Polymer layer thickness and molecular 

weight 

The optimum layer thickness of PEG 

chains is required to avoid interaction of plasma 

proteins (opsonins) with the hydrophobic surface of 

particles. The minimum coating layer thickness that 

can guarantee efficient particle coating depends on 

a number of factors including the possible 

adsorbable proteins and the nanocarrier size (Rudt 

and Müller, 1992).Studies have revealed that a 

minimum effective hydrodynamic layer thickness 

is about 5% of the particle diameter (Stolnik et al., 

1995).Moghimi et al. demonstrated that 4kDa PEG 

provide coating thickness of 5nm which found 

efficient protective layer for 60-200nm Polystyrene 

particles from complement activation and 

subsequent mono nuclear phagocytic uptake by 

macrophages (Moghimi et al., 1993b).Further 

several studies revealed that increasing the 

molecular weight of PEG proportionally the blood 

half-life of PEG coated nanocarriers 

increased(Leroux et al., 1995, Peracchia et al., 

1999). 

 

5.1.4Density on the carrier surface and 

configuration 

The conditions that lead to protein 

repulsion from hydrophobic plane surfaces to 

which PEG chains were attached to one chain end 

in a "brush" configuration were recently studied 

(Jeon and Andrade, 1991).The best conditions for 

protein repulsion were found to be long PEG chain 

length and high surface density that is brush 

configuration (Jeon et al., 1991).The mushroom 

like structure is results from the low surface density 

of PEG molecules covering the surface of 

nanocarrier (Tirosh et al., 1998, Du et al., 2001)and 

at high PEG density, the PEG molecules extends in 

such a manner that avoid overlap with other PEG 

molecule thus resulting in brush configuration 

(Tirosh et al., 1998, Gref et al., 2000).The 

protective layer of PEG is considered as a cloud of 

possible chain confirmation with a high density 

enough to prevent interaction of opsonin with the 

surface of particles. In particular the PEG segments 

bound to the nanoparticles surface can form a large 

water cloud by linking two to three water molecule 

with each PEG molecule resulting in a brush or 

mushroom configuration and sterically repel the 

deposition of large proteins (Vonarbourg et al., 

2006).The surface configuration of PEG coated 

nanocarriers can be determined by various 

techniques such as small angle neutrons cattering 

(Washington and King, 1997),measurement of 

ultrasound velocity and by measuring surface 

adsorbed proteins on the surface of nanocarriers 

(Gregoriadis, 1998). 

 

5.2 Alternative approaches for long circulatory 

nanocarriers 

5.2.1 Poloxamine and Poloxamer 

From past several decades Surface 

modification by using poloxamer and poloxamine 

were utilized as one of the major approach to 

reduce the phagocytic uptake by the 

reticuloendothelial system after i.v. administration 

as it imparts hydration layer on the surface of 

nanocarriers. These are amphiphilic block 

copolymers comprising of hydrophilic blocks of 

ethylene oxide (EO) and hydrophobic blocks of 

propylene oxide (PO) monomer units. Poloxamers 

are a-b-a type triblock copolymers (PEO-PPO-

PEO) whereas poloxamines are tetrablock 

copolymers of PEO-PPO linked through 

ethylenediamine bridges [(PEO-PPO)2–N–CH2–

CH2–N–(PPO-PEO)2] (Yokoyama, 1991, Kumar 

et al., 2001, Adams et al., 2003).These polymers 

can be physically adsorbed on the nanocarrier 

surface through the hydrophobic PPO fraction. The 

hydrophobic PPO fraction adsorb physically on the 

hydrophobic surface of the nanocarrier exposing 

the hydrophilic fraction to the surface. Several 

research studies revealed that the coating obtained 

by poloxamine and poloxamer bestow hydrophilic 

coating and increase the retention time in systemic 
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circulation. Susan et al demonstrated that the 

surface modified PLGA nanoparticles having size 

ranges from 80-150 nm with polypropylene oxide-

polyethylene oxide (PPO-PEO) block copolymers 

of the poloxamer and poloxamine series 

(poloxamer 407, poloxamine 904 and poloxamine 

908) shows that poloxamer 407 or poloxamine 908 

surface modified PLGA nanoparticles display 

prolonged blood circulation time accompanied by a 

combined lessening in liver and spleen 

accumulation after intravenous injection in the rat. 

Three hours post intravenous injection, 39% and 

28% of the administered dose of poloxamer 407- 

and poloxamine 908-coated PLGA nanospheres 

remains in the blood circulation(Dunn et al., 1997). 

 

5.2.2 Polysaccharides 

The hydrophilic nature of polysaccharides 

makes them suitable for imparting stealth coating 

to nanocarriers in blood stream. Several research 

groups prepared the surface modified nanoparticles 

with derivatives of chitosan(Fan et al., 2010, Kim 

et al., 2010),dextran(Mehvar, 2000, Li et al., 

2009),hyaluronic acid (Choi et al., 2010), and 

heparin(Park et al., 2007, Wang et al., 2009b, Ye et 

al., 2014)providing surface shielded hydrophilic 

layer on nanoparticle surface resulting in increased 

circulation half-life. Furthermore polysaccharides 

are biodegradable, biocompatible and less 

immunogenic and toxic and bearing 

multifunctional groups useful for ligand attachment 

and drug conjugation(Park et al., 2007, Kean and 

Thanou, 2010, Li et al., 2011). 

Papisov et al projected to use acyclic 

hydrophilic polyacetals which is a derivative of 

polycarbohydrates to substitute PEG(Papisov, 

2001).Hydrophilic polyacetal found to have parallel 

characters as PEG that is biodegradability and 

availability of freely modified functional groups 

140. In addition, a polylysine grafted with 

polyacetal had considerably longer half-life as 

compared to polylysine grafted with dextran. 

Although polyacetal is derived from dextran, a new 

biocompatible polymer that can be prepare by 

reversibly modifying dextran with an acetal-

shielded group(Bachelder et al., 2008).This 

dissimilarity was due to the removal of rigid 

stereospecific structures of dextran(Papisov, 2001). 

 

5.2.3 Zwitterionic Polymers 

Xio et al in 2012 developed a noval long 

circulatory blood pool contrast agent by 

introducing zwiterionic structure on the surface of 

polyacrylic acid coated magnetite 

nanoparticles(Xiao et al., 2012). Zwitterionic 

structure was made-up by 3-

(diethylamino)propylamine (DEAPA). DEAPA 

grafting was done via EDC/NHS [N-(3-

dimethylaminopropyl)-N'-ethylcarbo-diimide 

hydrochloride/N-hydroxysuccinimide] coupling 

chemistry. These particles showing five times 

lower macrophage cell uptake, longer circulation 

time and low cell toxicity than uncoated 

particles(Xiao et al., 2012). Further zwitterionic 

phospholipid derivatives have been confirmed to 

decrease the complement activation induced by 

liposomes (Vermette and Meagher, 2003).Likewise 

PEG, zwiterionic polymers bind water molecules 

strongly and form a electrostatically induced 

hydration layer (Chen et al., 2011)that decreases 

the rate of opsonin adsorption in blood stream. 

Betaines such as sulfobetaine and carboxybetaine 

are zwitterionic molecules, which bind water 

molecules via electrostatic interactions(Jiang and 

Cao, 2010, Shao et al., 2010), more strongly than 

those depend on hydrogen bonding like PEG (Chen 

et al., 2011).Therefore from the above evidences 

the zwiterionic polymers found comparable to that 

of commonly used poly-(ethylene glycol) (PEG) 

for imparting stealth character to intravenously 

administered nanocarriers. 

 

5.2.4 Polyglycerols 

Polyglycerols (PGs) or polyglycidols are 

biocompatible and flexible hydrophilic aliphatic 

polyether polyols, arranged in branched or linear 

forms, with an antifouling effect that is comparable 

to PEG (Siegers et al., 2004, Kainthan et al., 2006, 

Kainthan et al., 2007).In addition polyglycerols are 

hyperbranched contain multiple hydroxyl groups, 

that allows it for further functionalization(Siegers 

et al., 2004). Hyperbranced polyglycerols having 

long circulation half-lives of (33 hours for 106 kDa 

and 57 hours for 540 kDa) specify their potential as 

stealth polymers(Kainthan and Brooks, 2007). 

Liposome and gold decorated with PGs show 

minimum protein adsorption and extended blood 

circulation time(Maruyama et al., 1994, Siegers et 

al., 2004). 

Wyszogrodzka et al in 2009 studied the 

interaction of biofouling relevant proteins: 

fibrinogen, lysozyme, albumin and pepsin with a 

series of hyperbranched polyglycerol dendrons 

modified by alkanethiols. The results demonstrated 

that the all polyglycerol dendrons possess excellent 

resistance to test proteins upto studied time frame 

of 24 hrs(Wyszogrodzka and Haag, 2009). 
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Hyperbranched polyglycerols resist the 

nonspecific adsorption of proteins on magnetic 

nanoparticles. The capability of hyperbranched 

polyglycerols is comparable favorably with the 

performance of methyloxy poly(ethylene glycol) (a 

linear mPEG with a molecular weight of 750) in 

resisting the adsorption of proteins(Wang et al., 

2008).Moreover, PGs have greater resistance to 

heat and oxidative stress as compared to PEG, 

which makes them potential candidates for 

biomedical applications (Siegers et al., 2004). 

 

5.2.5Polyoxazolines 

Polyoxazoline (POx) have been 

extensively used as a hydrophilic segment in 

amphiphilic block-co-polymer. Poly (2-ethyl-2-

oxazoline) make amphiphilic diblock polymer by 

coupling with a hydrophobic block polymer to 

form polymeric micells such as POx coupled with 

poly (epsilon-caprolactone)(Cheon Lee et al., 

2003),  poly(1,3-trimethylene carbonate)(Kim et 

al., 2000) and poly(aspartic acid)(Wang et al., 

2009a). Moreover poly (2-ethyl-2-oxazoline) 

grafted with poly (L-lysine) was found a promising 

carrier as compared to PEG grafted poly (L-lysine) 

for the delivery of non-viral therapeutic DNA(von 

Erlach et al., 2011). In addition, POx was also used 

in a study to graft liposomes and shown to be 

comparable to PEG in prolonging the circulation 

time(Zalipsky et al., 1996). Recent study on 

cytotoxicity testing of poly(2-oxazoline) 

amphiphiles reveals that these polymers are 

typically not cytotoxic even at high 

concentrations(Luxenhofer et al., 2011).  

 

5.2.6 Poly (amino acids) 

Poly-(hydroxyethyl l-glutamine) and poly-

(hydroxyethyl-l-asparagine) (PHEA) are two 

examples of poly-(amino acids) which have been 

developed as a substitute for PEG. These 

poly(amino acids ) acts as potential stealth 

polymers (Metselaar et al., 2003) and gets degraded 

without difficulty, reducing the risk of 

accumulation and toxicity (Romberg et al., 

2007a).Also these polymers prolong the blood 

circulation of NPs at par with PEG. Additionally 

PHEA coated liposomes proved to be more 

effective than PEGylated liposomes in maintaining 

the stealth effect of accelerated blood clearance at 

low lipid doses(Romberg et al., 2007b). 

 

 

 

5.2.7 N-(2-hydroxypropyl)methacrylamide 

(HPMA) 

First reported by Kopecek et al (Kopecek 

et al., 1973), HPMA brought a new era in 

macromolecular drug delivery as they possess 

varied properties such as biocompatibility, 

hydrophilicity and their ability to accommodate 

structural modifications (Lammers et al., 2009, 

Kopecek and Kopeckova, 2010). HPMA 

conjugated low molecular weight drugs and 

targeting moieties increases their circulation time 

which allows for EPR mediated tumor 

accumulation(Rihova et al., 1988, Rihova et al., 

2001, Erez et al., 2009, Pike and Ghandehari, 

2010). Drugs conjugated via an enzymatically 

cleavable peptide linker facilitates intracellular 

drug release (e.g., GFLG)(Rejmanová et al., 1983). 

 

5.3 Biomimetic approaches 
In last few decades interest is growing 

towards biomimetic coating for imparting stealth 

character to intravenously administered 

nanocarriers so that they will remain in systemic 

circulation for a prolong period of time. 

 

5.3.1 RBC based nanocarriers 

Recently, a new approach for producing 

biomimetic nanoparticles has been motivated by 

body‘s own long circulatory entities, red blood 

cells (RBCs). RBCs are natural carriers for oxygen 

having highly flexible structure with circulation 

half-life of 120 days, represents an ideal system for 

prolonging the circulation time of intravenously 

injected nanocarriers beyond that of pegylated 

nanocarriers(Fang et al., 2012). Doshi et al and 

markel et al developed highly concave 

nanoparticles and showed that mechanobiological 

mimicry of RBCs can increase the particle 

elasticity and extend their circulation time(Doshi et 

al., 2009, Merkel et al., 2011). Hu et al have 

developed a new drug delivery platform that 

couples RBC membrane derived vesicles with 

polymeric nanoparticles prepared from Poly (lactic-

co-glycolic acid) (PLGA) polymer (Hu et al., 

2011). 

Furthermore finding of RBCs membrane 

proteins revealed that the RBC surface bound 

proteins helps to prevent their uptake by 

macrophages. For example, CD47 has been 

identified on RBC surface which prevent the 

uptake of RBCs by macrophages(Oldenborg et al., 

2000).In addition to CD47, the other proteins 

identified on RBC surface including C8-binding 

proteins (C8bp)(Schönermark et al., 
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1986),homologous restriction proteins 

(HRP)(Zalman et al., 1986), decay accelerating 

factor (DAF), membrane cofactor protein (MCP), 

complement receptor 1 (CR1) and CD59(Kim et 

al., 2008)prevent the recognition by the 

complement system thereby reducing their uptake. 

Tsai et al in 2010 developed CD47 surface 

conjugated polystyrene beads and characterized for 

macrophage uptake. It was found that CD47 

conjugated polystyrene beads prevent the 

macrophage uptake(Tsai et al., 2010). 

Thus the above findings gave the concept 

that if the delivery system possesses autologous 

surface characteristics to that of RBCs then such 

system might be able to make the delivery system 

long circulatory. 

 

5.3.2 Biomimetic mucin 

Mucins, a dominant class of large and 

heavily glycosylated proteins that is characterized 

by extended regions of densely clustered serine and 

threonine residues bearing O-linked glycans linked 

with N-acetyl galactosyl amine present in the 

mucus of the epithelium (Lindén et al., 2008, 

Rabuka et al., 2008).Mucin is amphiphilic in nature 

which render them to act like natural surfactant like 

the pluronics(Shi et al., 1999).Their natural origin, 

defensive role against pathogen and anti-fouling 

features facilitate positive host reactions, 

compatibility and controlled cellular interaction 

that suggest possible roles for mucin as 

biocompatible coatings for synthetic materials 

(Crouzier et al., 2012). 

These functions when applied for the 

modification of nanoparticle surface leads to the 

covering of surface epitopes and thereby making 

the nanoparticle long circulating and non-

immunogenic. Thasneem et al in 2013 prepared 

mucin functionalized Poly lactic-co-glycolic acid 

(PLGA) nanoparticles by conjugation of amino 

group of mucin to the terminal carboxylic acid 

groups on PLGA followed by nanoparticles 

synthesis via solvent evaporation method. The 

results revealed that the mucin modified PLGA 

nanoparticles proved promising in reducing the 

plasma protein (opsonin) adsorption and 

subsequent complement and platelet activation 

(Thasneem et al., 2013). 

 

VI. CONCLUSION 
Long circulating carrier system offers an 

excellent therapeutic strategy against systemic 

infections. Pegylation and bio-molecular approach 

seems to have a better therapeutic prospect among 

the various approach being exercised so far in this 

field. However the clinical effectiveness of these 

strategies requires a detail acute and chronic 

toxicological profiling of the system in blood. With 

the advent in molecular pharmacology and 

pharmaceutical technology we can understand 

better the molecular consequences of opsonisation 

process which helps in the development of an 

appropriate mechanism against systemic infections. 
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